The generator matrix

 1  0  0  1  1  1  1  1  1  1  6  1 X+6  1  1  1  X  1  1  1  1  X 2X+6  1 X+6  1  1  1  0 X+6  1  6  1  1  1  1  1  1  6 2X  1  1 2X+3 2X+3  1  1  0  1  1  1  1  1  1  1  1  0 X+3 2X+3  1  1  3  1  1  1  1  1  1  1  1  6 2X+6  1 2X+3  1  1  1  1  1  1 2X+3  1  1  1  1  1 X+3  1  0  1  1 X+3  X  1  1
 0  1  0  0  3 2X+7 2X+1 X+8 X+7 X+2  1  8  1 X+6 2X+5 2X+7  1 2X+8 2X+1  4  6  1  1 2X+8 2X+6 2X  8 X+5  1  1 2X+4  X X+7  5  7  X 2X X+7  1  1  4  X X+6  1  6 X+8  1 X+1 2X+5  3 X+4 X+3  7 X+8  X 2X+6  1  1  2 2X+3  1 X+4 2X+5  5  1 2X+7 X+8 2X+2  3  1  1 2X+6  1 X+5 2X+7 X+6 2X  6  5  1 2X+4 X+4  4 2X 2X+7  3 2X+1  1  6 X+2  1  1 X+4 X+7
 0  0  1 2X+7  5  2 2X+1 X+3 X+6 X+5  7 X+1 2X+5  6 2X+7 2X+3  1 2X 2X+5 2X+1  4  0 X+5 X+8  1 X+5 X+6  5 X+2 2X+1  0  1 X+7  7 X+2 X+1  2  3  3  0 2X+6 2X+7  1 2X+5  X 2X+3 2X+7 2X+4  7 X+5  8 X+6 2X+2 2X+5 2X+8  1 X+3 X+6 2X+1  1 X+1 2X+6 2X+2 2X+2 X+7 2X  6 2X+3 X+4 2X+3 2X+7 X+4  4 2X+7 X+4  1  0 X+4  8  X X+6 X+8  8 X+5 2X+5  1 X+1  5 2X+6 X+1 2X+3 2X+1 2X  7
 0  0  0  6  6  6  6  6  6  6  0  6  0  6  3  0  3  0  3  3  0  6  6  3  6  3  3  0  3  6  3  3  0  0  0  3  0  6  3  6  0  0  6  3  3  3  6  6  3  3  3  3  0  0  6  0  0  3  0  6  0  0  6  0  3  6  3  6  0  6  0  6  0  3  0  0  6  6  3  0  3  0  3  0  6  6  3  6  6  0  0  3  3  6

generates a code of length 94 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 179.

Homogenous weight enumerator: w(x)=1x^0+564x^179+1080x^180+2232x^181+2742x^182+3644x^183+4488x^184+4398x^185+4576x^186+4722x^187+4716x^188+4044x^189+4194x^190+3750x^191+3664x^192+3006x^193+2292x^194+1584x^195+1596x^196+780x^197+522x^198+138x^199+156x^200+54x^201+12x^202+6x^203+14x^204+18x^205+18x^206+14x^207+6x^208+12x^209+6x^215

The gray image is a code over GF(3) with n=846, k=10 and d=537.
This code was found by Heurico 1.16 in 11.3 seconds.